Shubham Gupta

gupta.shubham@nyu.edu | +191760 $\overline{3}$ 2850 https://linkedin.com/in/shubhamgupto | https://iamshubhamgupto.github.io

Machine Learning Engineer: Second year graduate student studying Computer Engineering at New York University and Climate Modelling Research Assistant. Extracurricular Computer Vision and DevOps lead. Three internships with experience in open-source contributions and working with PyTorch, TensorRT, Python, Docker, and Git.

Experience

NYU RoboMaster: Ultraviolet

New York City, US

Computer Vision and DevOps Lead | Mentor: Chris DiMauro

September 2022 - Present

- Lead SDK and Machine Learning developer at Ultraviolet, a DJI robotics eSports team.
- Spearheaded large scale HPC experimentation for tuning quantized object detection models, including YOLOv8, YOLOv9, and RT-DETR. Successfully integrated with Kalman filters for motion prediction and trajectory forecasting.
- Compiled high-performance ROS2 machine learning inference containers for ARM64 Nvidia GPUs.
- Competed in RoboMaster University League 2023 and secured 5th position out of twenty teams internationally.

Aruba, a Hewlett Packard Enterprise company

Bangalore, India

Software Development Intern

January 2022 - July 2022

- Developed SpringBoot APIs using ElasticSearch and Postgres data for IoT Operations, edge to cloud story.
- $\bullet \ \ {\rm Designed} \ \ {\rm and} \ \ {\rm deployed} \ \ {\rm monitoring} \ \ {\rm dashboard} \ \ {\rm for} \ \ {\bf 150k} \ \ {\rm customer} \ \ {\rm device} \ \ {\rm statistics} \ \ {\rm using} \ \ {\rm ElasticSearch}, \ {\rm Grafana} \ \ {\rm and} \ \ {\rm Python}.$
- $\bullet \ \ {\rm Managed \ dependencies \ for \ Docker \ containers. \ Removed \ 1000+\ low, \ medium, \ and \ high \ priority \ CVE \ vulnerabilities.}$

Indian Space Research Organization

Bangalore, India

Research Intern | Advisor: Dr. Hebbar R

August 2019 - April 2020

- Published work at the international conference of Computer Vision and Machine Intelligence (CVMI 2022).
- Demonstrated an automated **Sentinel-2** data pipeline with SnaPy and GDAL for water body detection, **eliminating** manual annotation. Tested on **DeeplabV3+** and a custom architecture for **near real time** water segmentation.

TECHNICAL SKILLS

Languages: Python3, Triton, C++, Java, SQL, Shell, Lucene, LATEX

Libraries: PyTorch, Pytorch3D, Onnx, TensorRT, OpenCV, Scikit-learn, Numpy, Pandas, Numba, PyRealSense2, Flask, FFmpeg

Frameworks: ROS2 Humble, SpringBoot, Elasticsearch, Jekyll, Hugo, Jenkins, Kubernetes, CUDA

Applications: HPC, AWS, GCP, Docker, Grafana, QGIS, Github, Jira, Confluence, Firebase, Postman, Lightroom, Blender

Certifications: Associate Cloud Engineer, Architecting with Google Compute Engine, 30 Days of Google Cloud

EDUCATION

New York University

New York City, US

Master of Science in Computer Engineering — 3.78/4.00

Sep 2022 - May 2024

PES University

Bangalore, India

Bachelor of Technology in Computer Science and Engineering — 8.39/10.0

Aug 2018 - May 2022

Publications

Lee, K., Gupta, S., Kim, S., Makwana, B., Chen, C., & Feng, C. (2023). SO-NeRF: Active View Planning for NeRF using Surrogate Objectives. arXiv preprint arXiv:2312.03266. [preprint] [code]

Gupta, S., Uma, D., & Hebbar, R. (2023). Analysis and application of multispectral data for water segmentation using machine learning. In Computer Vision and Machine Intelligence: Proceedings of CVMI 2022 (pp. 709-718). Singapore: Springer Nature Singapore. [preprint] [code] [publication] [slides]

Projects

 ${\bf Cavemen:\ A\ prehistoric\ approach\ for\ Mapless\ Navigation\ |\ [{\bf Website}]\ |\ {\it Python3},\ {\it SIFT,\ FAISS,\ VBoW,\ Redis}}$

2023

 Visual Place Recognition and navigation using only monocular input and classic visual features. Top submission for coursework Robot Perception ROB-GY 6203 Fall 2023. [LinkedIn]

LYCB: Leave Your Clothes Behind | [Website] | HPC, Segment-Anything, COLMAP, Pytorch3D

2023

• Proof-of-Concept to capture real world clothes on hand held devices and create assets to be used in Blender or virtual try-ons.

Open-Source - [GitHub]

Added NVIDIA Jetson support to mamba_ssm and causal-conv1d python modules with CUDA compatibility 72 and 87. The changes allows users to apply mamba_ssm on embedded systems. [Mamba-ssm PR] [Causal-Conv1d PR]

Optimized code run time and website deployment. Created content for machine learning with Lorenz-96 climate model. [Website]

Wrote a Colaboratory object detection demo notebook for ViT-Adapter, published in ICLR 2023. [GitHub]