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Abstract

The demand for assets in the virtual world has recently gained
a lot of attention. We present a novel framework dubbed
LYCB: Leave Your Clothes Behind that allows users to di-
rectly generate a 3D mesh object of garments from a monoc-
ular video using a hybrid method combining Deep Neu-
ral Radiance Fields and physics-based simulators. The pro-
posed method fills the gap in literature by enabling accu-
rate representation of virtual try-on of garments on any for-
eign body, whilst simultaneously being able to model com-
plex details in an apparel-agnostic manner. Succintly, it pro-
vides a mean to extract, reconstruct and fit almost any gar-
ment or any foreign bodies. Our code is made available at
https://github.com/IamShubhamGupto/LYCB

Introduction
The virtual world like Metaverse is a rapidly growing space,
with more and more people spending time in it for work,
play, and education. As the virtual world becomes more im-
mersive, there is a growing demand for real world objects
to be brought into it. This is especially true for clothes, as
people want to be able to express themselves through their
fashion choices, even in the virtual world.

Practical and accurate virtual try-on would conceivably be
an attractive value proposition to e-commerce platforms as
well, since it could potentially help improve user retention
and engagement, while simultaneously reducing purchase-
return rate from inaccurate sizing; both reduction of return-
rates and improvement on retention would be great boon to
profitability.

Users of the virtual world could generate virtual assets
from scratch however, it may not be accurate and is very
time consuming. This is especially true for apparels due to
their wide variability, rendering them difficult to model and
simulate in an automated manner. In this work, we attempt to
address this issue by providing a framework to directly gen-
erate model agnostic assets from monocular RGB videos.

Neural radiance fields have recently been adopted to gen-
erate 3D representations by combining multiple views. In
this work, we will be utilizing NeRF2Mesh (Tang et al.
2022) to create the meshes with texture baked in, and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Blender for accurate physics based cloth simulations to fit
said clothing mesh on a foreign body (e.g. mannequin).

Related Work
Neural Radiance Fields (NeRF)
Neural Radiance Fields (Mildenhall et al. 2020) introduced
the method of generating novel 3D views from sparse inputs.
The input for NeRF can be defined as a single continuous 5D
coordinate (location and viewing angle) and its output is the
volume density and view dependent emitted radiance at that
spatial location. However, while the original technique can
be used to export to mesh, it fails to capture the texture, an
important property of clothes.

NeRF2Mesh (Tang et al. 2022) address’ the above issue
by first initializing the geometry and appearance of the mesh
using a Neural Radiance Field (NeRF). Next, it performs an
iterative surface refinement process that adaptively adjusts
the vertex positions and face density based on re-projected
rendering errors. Finally, the appearance is jointly refined
with the geometry and baked into texture images.

While NeRF produces great results, its performance is di-
rectly related to the amount of the training data and compute
resources allocated. The authors of Instant NGP (Müller
et al. 2022) propose a new method to train Neural Graphics
Primitives using an encoding technique that applies a mul-
tiresolution hash table to store the input data, which allows
the network to disambiguate hash collisions, making for a
simple and efficient training algorithm. It provides a new
way to train NGPs that is significantly faster and more ef-
ficient than existing methods (Mildenhall et al. 2020).

Radiance Fields Based Reconstruction
The authors of SCARF (Feng et al. 2022) address the prob-
lem of extracting a 3D clothed avatar using a neural im-
plicit reconstruction process from monocular videos. The
demonstrated method allows users to transfer clothing be-
tween avatars and also animate their movements. This makes
it ideal for virtual applications such as try-ons.

Another method, PERGAMO (Casado-Elvira,
Comino Trinidad, and Casas 2022) can also extract
and fit 3D garments from monocular videos. The method
demonstrated generating 3D representations from a single
view. However, it suffers from drawbacks like un-modelled



Figure 1: Overview of proposed framework, LYCB.

self-collisions and being only able to reconstruct close to
the underlying deformable mesh. This creates a dependency
and works only when we have a matching deformable mesh.

Non-Radiance Field Based Reconstruction
Besides Radiance Fields based methods, researchers have
proposed alternatives such as JFNet (Xu et al. 2019) that uti-
lizes multi task learning to produce 3D garments using just
the front and back view. However, it suffers from the same
issue as PERGAMO (Casado-Elvira, Comino Trinidad, and
Casas 2022) where the template limits the range of garments
that can be modelled.

Another approach is to use multi-layer perceptrons which
can model pose, shape and style of the clothes avatar (Patel,
Liao, and Pons-Moll 2020). The proposed method is compu-
tationally efficient but fails to generalize over different body
types.

Methodology
The proposed framework of Leave of Cloths Behind (LYCB)
is a multi-stage process that leverages on techniques of var-
ious domains, from Structure-from-Motion (SfM) to cloth-
ing simulation; the following section details the individual
underlying components sequentially as outlined in Figure 1.

On a high-level, the main distinguishing factor of
LYCB when compared to other existing methods (e.g.
SCARF (Feng et al. 2022) and PERGAMO (Casado-Elvira,
Comino Trinidad, and Casas 2022)) is its flexibility and the
degree of control offered to the end-user. The aforemen-
tioned alternative have varying trade-offs such as, neural-
implicit radiance field methods that has great flexibility

in capturing complex garments (e.g. dress with frills) at
the cost of sub-optimal physical response when fitting said
garment on another body (Feng et al. 2022), or template-
displacement with vertex regression methods that are able
to accurately model said response (e.g. fine wrinkle from
soft-body deformation) but is incapable of capturing and
reconstructing a complex garment mesh (Casado-Elvira,
Comino Trinidad, and Casas 2022). LYCB aims to fit the
gap in between by leveraging the flexibility of geometry-
agnostic neural implicit radiance fields for modelling and
well-conditioned physics-based clothing simulation algo-
rithms for accurate any-body garment fitting.

Camera Parameter Estimation with COLMAP
To begin, LYCB takes as input a 360◦ monocular sequence
of the target garment for reconstruction via NeRF2Mesh
(Tang et al. 2022), a neural implicit radiance field method
with simultaneous texture recovery. However, in order to
perform said reconstruction, the camera parameters (e.g. in-
trinsic and extrinsic) needs to be first determined since it will
need to know how each individual pixel across frames cor-
responds spatially to the actual 3D coordinates of the target.

One method of such camera parameter estimation is
COLMAP (Schönberger et al. 2016; Schonberger and Frahm
2016), a SfM algorithm designed to recover 3D structure
from a collection of 2D views. On a high-level, COLMAP
achieves this by first extracting a set of SIFT features (Lowe
1999) for each individual frame, and then trying to trian-
gulate the global and relative position of each view rela-
tive to a common coordinate system via iterative feature
matching and bundle adjustments. Therefore, for the input



Figure 2: Overview of NeRF2Mesh’s pipeline; adapted from (Tang et al. 2022).

sequence, LYCB expects and inherits the assumptions from
both COLMAP and its underlying SIFT feature extractor,
such as scene intensity consistency, having high degree of
iter-frame overlaps, and each frame having determinable ge-
ometric description for meaningful SIFT feature extraction
(e.g. corners not edges).

Specifically, LYCB uses COLMAP to determine camera
intrinsic parameters (e.g. K matrix) such as the horizontal
fx and vertical fy focal lengths, and camera extrinsic param-
eters via the 4x4 transformation matrix which characterizes
the rotation, translation and scaling of the camera relative to
global reference coordinate; we shall denote said combined
parameters for the i-th frame as Pi.

Garment Selection via Segmentation Masking
Next, in order to isolate the target garment from other sur-
rounding scene objects and characters, LYCB utilizes a pre-
trained Segment-Anything (SAM) segmenter (Kirillov et al.
2023) to perform zero-shot semantic segmentation.

SAM is state-of-the-art segmentation model that could be
positively or negatively prompted with keypoints, bounding
boxes or masks to generate a multi-level semantic mask of a
specified object; as seen in Figure 1 SAM could segment in-
dividual apparel with great accuracy. Underlying SAM is an
encoder-decoder architecture driven by Vision Transform-
ers (ViT) (Dosovitskiy et al. 2020) with an additional CLIP
prompt-encoder (Radford et al. 2021); the rest of the archi-
tectural details of SAM shall be omitted here for brevity.

Since SAM could generate multi-level output per in-
stance, one would need to determine which output corre-
sponds the the target garment for proper masking and ex-
traction. By default, LYCB picks the final mask for the i-th
frame Mi by selecting for maximum the objectness score,
Si,obj . It needs to be noted that this could vary for different
input sequence and therefore may require fine-tuning to en-
sure a consistent and accurate extraction across all frames.

The entire process can be described by the following equa-
tion where xi is the i-th RGB frame, Zi is the set of prompts
for the i-th frame and N is the total number of frames in the
sequence.

Mi = argmax
Si,obj

SAM(xi, Zi) , for i ∈ [1, N ] (1)

To simplify the extraction process, it would be useful to
ensure that the target stays centered in the frame across the
entire sequence and then assignment the frame center with
a positive keypoint and the edges with negative keypoints
correspondingly in Zi.

Garment Reconstruction with Neural Radiance
Fields
For garment modelling and reconstruction, LYCB leverages
NeRF2Mesh (Tang et al. 2022). Unlike NeRF (Mildenhall
et al. 2020), NeRF2Mesh is different as it is able to recover
the texture of the object, crucial for virtual try-on applica-
tions, and reconstruct detailed non-watertight and hollow
surfaces - a key characteristic of garments. Figure 2 illus-
trates the key procedure of NeRF2Mesh end-to-end.

Succintly, neural radiance field methods attempt to learn
how to represent a target object as a 3D volumetric density,
given a collection of multi-view 2D images of said target
with the corresponding camera parameters; e.g. given a ray
projected from point Q of R3 in a certain direction θ, return
the corresponding density and chromatic values of a set of
points sampled along said ray. In addition to the default den-
sity and chromatic values, NeRF2Mesh further decomposes
the chromatic component into 2 sub-components - namely
the diffuse and specular values with separate MLPs (dubbed
the Appearance Field). By learning to represent the diffuse
color and specular component, it enables NeRF2Mesh to
generate the corresponding diffuse and specular texture map
via exhaustive sampling and UV unwrapping after training.



Since the learned radiance fields represents only the volu-
metric density and appearance information, additional steps
for surface reconstruction is required in order to transform
said volumetric information into an actual 3D mesh. In the
original NeRF (Mildenhall et al. 2020), Marching Cube
is used for surface reconstruction, but the resulting mesh
is inefficient and often contains undesirable artifacts for
our application - blocky and admits non-hollow surfaces.
NeRF2Mesh resolves these issues by adopting a course-to-
fine mesh refinement schema with additional supervision to
optimize for more accurate vertex displacements and recon-
structed mesh faces on top of Marching Cube.

Overall, LYCB with NeRF2Mesh is able to generate high
quality textured mesh model of the target garment in a neu-
ral implicit manner. The key loss functions of NeRF2Mesh
are as follow, where r is the ray index, C(.) the pixel color
function, cs the specular color value, qk the k-th query point
along ray r, wi is the point-wise rendering weight of the k-th
query point and vi the vertex offsets array. All together, Ltotal
denotes the total loss, Lnerf the conventional radiance field
photometric loss, Letp the entropy loss for better surface de-
tails, Loffset the loss term to regularize vertex displacements
during mesh refinement, and Lϵ the catch-all for optional
loss terms not covered explicitly here for brevity. Finally, it’s
worth mentioning that for LYCB, the PyTorch NeRF2Mesh
implementation from (Ashawkey 2023) is utilized.

Lnerf =
∑
r

||C(r)− Ĉ(r)||2 (2)

Lspec =
∑
k

|cs(qk)| (3)

Letp = −
∑
k

(wklog(wk) + (1− wk)log(1− wk)) (4)

Loffset =
∑
k

(∆vi)2 (5)

Ltotal = Lnerf + Lspec + Letp + Loffset + Lϵ (6)

Figure 3: Training loss for Stage 0 and 1 respectively. Lower
is better.

Figure 4: PSNR of synthesized views for Stage 0 and 1 re-
spectively. Higher is better.

Results
Garment Fitting with Physics-Based Clothing
Simulation
For virtual try-on, we have utilized Blender and its cloth
physics simulation engine to fit our test garment on a non-
descriptive mannequin as demonstration. Note that mesh
cleaning is performed prior to the fitting step to ensure a
clean and proper mesh.

We chose a physics based cloth simulator approach in-
stead of an implicit alternative such as (Casado-Elvira,
Comino Trinidad, and Casas 2022) since the former provides
a much higher-degree of control over the garment char-
acteristics and behaviour (e.g. stretchability, compression-
resistance) and that it requires no additional training to do
so; additionally the result of physics based simulator is well-
behaved and better bounded as well. It is worth nothing that
the target body for fitting can be freely swapped out since
the reconstructed garment is a generic mesh object, and is
amenable to all treatments and manipulation like any mesh.

For validation, sample data was collected as seen in Fig-
ure 5, depicting a 360◦ monocular sequence of a subject
with the target garment(the beige top). As with NeRF, LYCB
is not trained to generalize (e.g. learning to fit) but instead
to represent the target garment as accurately as possible
(e.g. overfit on the target garment). Therefore, a large scale
dataset is not required since each training instance per new
sample will be trained to overfit as much as possible.

In terms of metric, the total loss Ltotal as outlined in Equa-
tion 6, and the Peak-Signal-to-Noise-Ratio (PSNR) of the
synthesized novel views are used to to evaluate the recon-
struction performance. For the fitting of the reconstructed
garment mesh on a foreign body (e.g. mannequin), there
are unfortunately no direct way to evaluate the performance
since there are no ground truths 3D mesh of how such
garment would fit said foreign body without explicit mod-
elling. Conceivably, in later work a more extensive dedicated
dataset with known foreign bodies can be collected and con-
structed (e.g. let subjects swap clothing and take some as



Figure 5: Sample output of each stage across 3 frames. From left to right - input sequence, extracted garment, reconstructed
mesh and fitted garment on mannequin in Blender.



ground truths via explicit 3D scan or equivalent photogram-
metry methods). However for now, the former evaluation
metrics will be used for evaluation.

Figure 3 and Figure 4 shows the Ltotal and PSNR value
for stage 0 (course mesh) and stage 1 (iterative mesh re-
finement) respectively. As observed, the loss converges quite
rapidly and starts to saturate around 5k iterations for stage 0
and 20k iterations for stage 1 respectively. Notably for both
the loss and PSNR values, the result of stage 1 is higher than
that of stage 0. We hypothesized that this is likely because in
stage 1, the mesh refinement procedure attempts to generate
a fine mesh with smooth, well defined surface (enforced via
a Laplacian smoothness term) and removes appendages that
the algorithm deems to be noisy; potentially at the cost of re-
duced PSNR and increased loss when compared to the pro-
jected 2D input references, which itself may contain noise
from imperfect environment and noisy segmentation mask.

On the other hand, we can observe in Figure 5 that qual-
itatively speaking, the reconstructed garment has good fi-
delity, thus validating the approach; the overall geometric
shape, structure and texture indeed closely resembles the
garment as seen in the input sequence. Although there ex-
tracted masked garment in the second column is not perfect,
it did not impact the reconstruction significantly and further
indicates that the refinement process is capable to handling
such noise. Additionally, it is also noteworthy to point out
that the fitted garment as seen in the fourth column does
seem to conform to the mannequin’s body in a reasonable
manner as expected (e.g. note the body-to-waist ratio of the
fit between the first and fourth column).

Conclusion
In this work, we have put forth a framework for garment ex-
traction, explicit mesh reconstruction and virtual fitting that
requires only a monocular video as input - dubbed Leave
Your Clothes Behind (LYCB).

Unlike existing alternatives that either suffers from lack-
luster physical compliance (e.g. inaccurate virtual fitting on
foreign body) or is incapable of reconstructing complex gar-
ments, LYCB is able to fit the gap by providing both accurate
and flexible virtual fitting, and capability to model complex
garments via physics-based clothing simulation and neural
radiance fields that are both model (e.g. any clothing type)
and subject (e.g. could transfer between any foreign bodies
for fitting) agnostic.

However, LYCB has its disadvantages as well, such as the
potential need to fine-tune the garment extraction process
with SAM depending on the input, and the long process-
ing time of the entire pipeline; e.g. from end-to-end, the en-
tire process could span hours depending on various factors
such as the number of input frames, the input resolution, the
complexity of COLMAP parameter estimation for the given
sequence and the number of NeRF2Mesh fitting iterations.
We believe that with the reconstruction quality and flexi-
bility demonstrated by LYCB, if the aforementioned issues
are alleviated, hybrid approaches such as LYCB that blends
cutting-edge Deep Learning methods and well-established
physics-based simulation could be a viable path forward in

addressing useful tasks such as personalized virtual try-on
and easy virtual asset generation in the future.
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