
Activations And Augmentations: Pushing The Limits Of Isotropic ConvNets

Keifer Lee,1 Shubham Gupta,1 Karan Sharma1

1 New York University
kl3866@nyu.edu, sg7761@nyu.edu, ks6421@nyu.edu

Abstract

Isotropic architectures have recently gained focus for solving
computer vision problems for their ability to capture better
spatial information. In this work, we experiment with
training a ConvMixer model, an isotropic convolutional
neural net architecture on the CIFAR-10 dataset. We
propose a new architecture: ConvMixer-XL consisting of
66 layers and just under 5M parameters. To maximize its
performance, various configurations of the architecture,
augmentations and activations were tried in our ablation
study to further fine-tune the model. Our experiments
show applying augmentations and using the Swish (SiLU)
activation function for deeper models gives the best results
with a top-1 accuracy of 94.52%. Our code can be found at
https://github.com/datacrisis/ConvMixerXL.

1 Introduction
Image classification is an old problem in computer vision
and great success has been achieved by taking advantage of
convolutional neural networks (Lecun et al. 1998). While
ConvNets have existed for a long time now, it is only in
the last five years that we observed improvements in Con-
vNets, patch embedding for images, and Vision Transform-
ers (Trockman and Kolter 2022; Woo et al. 2023; Dosovit-
skiy et al. 2020).

With the inception of ResNets (He et al. 2016), re-
searchers have been able to improve performance of net-
works by building deeper networks and training them for
longer epochs. This has been made possible by introduc-
ing skip connections into the architecture which circumvents
the vanishing gradient problem that has plagued prior deep
networks (Hochreiter 1998). A representation of a ResNet
block can be seen in Figure 1.

To boost the performance of networks further, image aug-
mentations have proven to aid with improving the gener-
alization capacity of the model on out of distribution sam-
ples. Some examples of said augmentations are random re-
sized crops (), random horizontal flips, random augmenta-
tion, color jitters, random erasing (Zhong et al. 2020), cut-
mix (Yun et al. 2019), mixup (Zhang et al. 2017).

Furthermore, it is well-known that by subjecting the in-
puts to non-linear activation functions, it enables the model

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to learn the complex relationships between the features and
expected outputs. Recently, activations such as leaky ReLU
(Agarap 2018), GELU (Hendrycks and Gimpel 2016), SiLU
(Elfwing, Uchibe, and Doya 2018) and many more have
proven to be a viable alternative to the widely adopted non-
negative piecewise linear ReLU (Agarap 2018). By switch-
ing out the ReLU activation in existing models with func-
tions that are continuous when differentiated, we expect bet-
ter performance with deeper networks.

Figure 1: ResNet block (He et al. 2016).

Our contributions in this work can be summarized as:

1. First, we propose a viable deeper ConvMixer architec-
ture, ConvMixer-XL, with added skip connections.

2. Second, we demonstrate the importance of using image
augmentation while training deeper networks.

3. Third, we compare the performance of different activa-
tion functions on ConvMixer and ConvMixer-XL.

2 Methodology
The base architecture of our model is made from ResNet
blocks and can be classified as an isotropic architecture
(Dosovitskiy et al. 2020). The network breaks the input into
patch embeddings which it passes through blocks of con-
stant width to learn the representations. This is unlike the



Figure 2: Overview of proposed architecture, ConvMixer-XL. Sub-figure (a) shows the high-level structure with inter-block
residual connection that spans depth/skip period number of ConvMixer layers, while (b) shows the structure of an individual
ConvMixer layer.

typical ConvNet designs where we incrementally increase
the channel dimension like a pyramid structure (Trockman
and Kolter 2022). We chose this architecture for the follow-
ing reasons: first, it is easily extendable by increasing the
number of blocks, second, generating patch embedding is
still an area of active research and we can further modify
how the embedding layer generates its patches, third, the au-
thors of ConvMixer (Trockman and Kolter 2022) suggested
their model may not yet be fully optimized for performance
which we wanted to explore.

In order to improve the representational capability of the
model, we’ve also increased the number of parameters in the
model to the limit by vastly upping network depth from 8-
blocks to 66-blocks deep with just under 5M parameters.
We dub this architecture as ‘ConvMixer-XL’. However, just
blindly increasing the depth and parameter count as such
introduces other drawbacks such as risk of overfitting and
convergence failures due to vanishing gradients (Hochre-
iter 1998). To combat the aforementioned issues, a new
set of long range inter-block skip connections were intro-
duced alongside a new hyperparameter called skip period
that controls the number of ConvMixer blocks that the inter-
block skip connection will span, as seen in figure 2. With
this, we’ve found that ConvMixer-XL is able to learn and
converge almost like the much shallower vanilla ConvMixer
model, thereby alleviating the vanishing gradient problem.
On the risks of overfitting, this particular issue was dealt
with by subjecting the training dataset to a battery of aug-
mentations. Results of experimentation with the model ar-
chitecture will be discussed in section 4.

Apart from building a deeper model, we wanted to push
the performance of ConvMixer-XL further; following the
original paper again, we also tried to tune the augmenta-
tions and regularizers used to train the model including Ran-
dom Erasing (Zhong et al. 2020) and Random Augmenta-
tion (Cubuk et al. 2020). The idea behind random erasing
is to occlude random regions of the image with noise which
forces the model to learn features less specific to the training
set. Random Augment as the name suggests applies a range
of random augmentations on images on multiple rounds re-
sulting in a very diverse dataset. This reduces the chances of
the model overfitting to features that only exist the training

set. Further discussion on the augmentations used is in sec-
tion 3. We keep most augmentations implemented by the au-
thor except for CutMix (Yun et al. 2019) and MixUp (Zhang
et al. 2017) due to implementation issues. The idea of using
augmentations is to better generalize the model weights for
out of distribution samples which should yield better perfor-
mance on the test and validation sets.

Activations in a network play an important role of adding
non-linearity in order to disentangle complex relationships
between the input and output features. The ReLU activation
function used in the original ResNet paper (He et al. 2016)
has proven its effectiveness. The same way, ConvMixer
(Trockman and Kolter 2022) shows both ReLU and GELU
have almost identical performance, GELU being slightly
better for isotropic architecture. In this work we compare
ReLU, GELU and SiLU activations for the ConvMixer and
ConvMixerXL architectures. We experiment with SiLU as
it has proven to perform better on deeper networks (Ra-
machandran, Zoph, and Le 2017). The biggest differentiat-
ing factor between ReLU and the rest would be the graph
shape, having a kink. GELU is a smooth approximation of
ReLU derived from a gaussian distribution while SilU is a
smooth approximation of the ReLU function derived from
the sigmoid function. We compare the performance of our
model with different activation, augmentation and depth on
the CIFAR-10 (Krizhevsky 2009) dataset in section 4.

3 Experiment setup
We ran our experiments using a NYU Greene HPC node
with 16 CPU cores, an NVIDIA RTX8000 GPU and 64GB
of DRAM. We set a seed to 1024 to make our experiments
reproducible. We use a batch size of 128 and the following
hyperparameters, if enabled: scale= 0.75, random erasing=
0.2, 2 random augmentations of magnitude 12, color jitter=
0.2, patch size= 2, kernel size= 5, horizontal dimension=
256, maximum learning rate= 0.005, weight decay= 0.01
and 8 workers.

4 Results & Discussions
Building off a vanilla ConvMixer (Trockman and Kolter
2022) classifier, various modifications were tested in order



Name Activation Depth Inter-Block Skip Augmentations #Params (M) Top 1 %Acc
CM-Vanilla-NoAug GELU 8 No No 0.59 0.8854

CM-Vanilla GELU 8 No Yes 0.59 0.9378
CM-Vanilla-ReLU ReLU 8 No Yes 0.59 0.9384
CM-Vanilla-SiLU SiLU 8 No Yes 0.59 0.9372
CM-XL-NoSkip GELU 66 No Yes 4.9 0.4868

CM-XL-Skip GELU 66 Yes Yes 4.9 0.9422
CM-XL SiLU 66 Yes Yes 4.9 0.9452

Table 1: Details and top-1 test accuracy of each configuration. All instances are trained on CIFAR-10 only for 100 epochs. Bold
indicates the best result.

Figure 3: Validation accuracy by epochs for each configura-
tions tested.

to find new configurations with better performance. Our pro-
posed ConvMixer-XL is like its namesake, a much deeper
version of its vanilla counterpart with extra tweaks to aid
convergence. The result of each configurations explored can
be found in Table 1; this can be viewed as an ablation study
as well.

Amongst the various instances, the best results are
achieved with ConvMixer-XL (CM-XL) with a Top 1 ac-
curacy of 94.52% on CIFAR-10. However, the vanilla Con-
vMixer (CM-Vanilla) is not far behind with a correspond-
ing accuracy of 93.78%. We hypothesize that the CIFAR-10
dataset is probably too simplistic and therefore the vanilla
version with a depth of 8 is already sufficient to represent
a relatively well performing classifier. Additionally, all the
model instances were trained with a 100 epochs only, which
may not be optimal in the case of a deep model such as
ConvMixer-XL; subjecting ConvMixer-XL to a more com-
plex dataset (e.g. CIFAR-100) and better hyperparameter
tuning (e.g. epochs) is an avenue for future studies. We also
found that if we simply added more blocks to the vanilla
model, the model convergence deteriorates significantly as
seen in Figure 3 (CM-XL-NoSkip), which can be attributed
to the issue of vanishing gradient. To combat this issue, addi-
tional long range skip connections were added into the archi-

Figure 4: Validation accuracy by epochs filtered (relevant
subset only) and zoomed-in for finer distinction.

Figure 5: Example of correctly classified test set samples by
ConvMixer-XL. From top-left to bottom-right, the predicted
classes are - horse, plane, bird, truck, ship, bird, deer, car,
dog, car, horse, truck, car, deer, dog and plane respectively.

tecture (e.g. inter-block residual connections; spans 22 lay-
ers in ConvMixer-XL-Skip) and convergence performance
recovered significantly.

In terms of activation functions, they do not seem to make
much difference, at least amongst the selection of functions
that were tested. However, we observe that Swish (CM-
Vanilla-SiLU) seems to show faster convergence speed in
general compared to ReLU (CM-Vanilla-ReLU) and GELU
(CM-Vanilla). We hypothesize that the difference observed
is likely due to the specific model initialization and dataset
at hand since Swish (SiLU) and GELU are very similar
functions mathematically. Augmentations however seems to
play a significant role in model generalization and perfor-



mance as expected - with all else equal, CM-Vanilla-NoAug
achieved only 88.54% in test time top-1 accuracy, a sizable
deterioration compared to CM-Vanilla.

All the model instances explored so far meet the require-
ment of not exceeding 5 million parameters as shown in Ta-
ble 1, with the ConvMixer-XL coming in at 4.9M parameters
in total. Finally, in terms of generalization on the test set, it
can be observed that none of the models are over-fitting by
cross-checking the resulting accuracy and ordering between
the validation and test sets result in both Figure 4 and Table
1. From Figure 5 and 6 where some example predictions of
ConvMixer-XL on the CIFAR-10 test set are shown, we can
see that the model does very well on the correct predictions
despite the sample variety. For the incorrect classifications,
it does appears that the samples are very hard in those par-
ticular instances - e.g. the bird’s body does somewhat look
like a dog’s from that angle, and the deer is incredibly hard
to discern due to its low resolution and distance from the
camera, from which it does look like a possible cat.

Figure 6: Example of wrongly classified test set samples by
ConvMixer-XL. From left to right, the predicted classes are
- dog and cat, and the labels are bird and deer respectively.

References
Agarap, A. F. 2018. Deep Learning using Rectified Linear
Units (ReLU). Cite arxiv:1803.08375Comment: 7 pages, 11
figures, 9 tables.
Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. V. 2020. Ran-
daugment: Practical automated data augmentation with a re-
duced search space. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition work-
shops, 702–703.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Elfwing, S.; Uchibe, E.; and Doya, K. 2018. Sigmoid-
weighted linear units for neural network function approxi-
mation in reinforcement learning. Neural Networks, 107:
3–11.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hendrycks, D.; and Gimpel, K. 2016. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415.
Hochreiter, S. 1998. The Vanishing Gradient Problem Dur-
ing Learning Recurrent Neural Nets and Problem Solu-
tions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 06(02): 107–116.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2017. Searching
for activation functions. arXiv preprint arXiv:1710.05941.
Trockman, A.; and Kolter, J. Z. 2022. Patches Are All You
Need?
Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon,
I. S.; and Xie, S. 2023. ConvNeXt V2: Co-designing
and Scaling ConvNets with Masked Autoencoders. arXiv
preprint arXiv:2301.00808.
Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo,
Y. 2019. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision,
6023–6032.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.
Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; and Yang, Y. 2020.
Random erasing data augmentation. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
13001–13008.


